Bayesian Latent Subgroup Design for Basket Trials

Yiyi Chu

Department of Biostatistics
The University of Texas School of Public Health

July 30, 2017

Outline

- Introduction
- Bayesian latent subgroup (BLAST) design
- Simulation Results
- Discussion

 Basket trials seek to simultaneously evaluate the effects of a particular targeted therapy on a genetic or molecular aberration across cancer types.

- Basket trials seek to simultaneously evaluate the effects of a particular targeted therapy on a genetic or molecular aberration across cancer types.
- This is in comparison to the traditional oncology clinical trials, which have been designed to evaluate a single treatment in patients of a particular cancer type.

- Basket trials seek to simultaneously evaluate the effects of a particular targeted therapy on a genetic or molecular aberration across cancer types.
- This is in comparison to the traditional oncology clinical trials, which have been designed to evaluate a single treatment in patients of a particular cancer type.
- The basket trial often requires fewer patients and a shorter duration to identify a favorable response to the targeted therapy.

- Basket trials seek to simultaneously evaluate the effects of a particular targeted therapy on a genetic or molecular aberration across cancer types.
- This is in comparison to the traditional oncology clinical trials, which have been designed to evaluate a single treatment in patients of a particular cancer type.
- The basket trial often requires fewer patients and a shorter duration to identify a favorable response to the targeted therapy.
- It can provide access to molecularly targeted agents for patients across a broad range of tumor types, even for those too rare to study solely within a tumor-specific context (Redig et al., 2015; Renfro et al., 2017).

Challenges of Basket Trials

- Patients selected into the basket trial may not respond to a drug similarly regardless of the primary tumor sites.
- Tumor type often has profound effects on the treatment effect, and it is not uncommon for a targeted agent to be effective for some tumor types, but not others.

 Two approaches have been utilized to assess the therapeutic effectiveness (Freidlin and Korn, 2013): the pooled analysis to simply pool the results across tumor types, or an independent evaluation conducted in each tumor type.

- Two approaches have been utilized to assess the therapeutic effectiveness (Freidlin and Korn, 2013): the pooled analysis to simply pool the results across tumor types, or an independent evaluation conducted in each tumor type.
- Bayesian hierarchical model (BHM) has been advocated to evaluate treatment effects in this setting (Berry et al., 2013).

Issues with BHM

- The exchangeable assumption underlying BHM is often violated in practice.
 - BRAF-mutant melanoma and hairy-cell leukemia are sensitive to the BRAF inhibitor PLX4032, whereas BRAF-mutant colon cancer is not (Flaherty et al., 2010).
 - Trastuzumab is effective for HER2-positive breast cancer but not for HER2-positive NSCLC or HER2-positive recurrent endometrial cancer (Fkenubg et al., 2010).

Issues with BHM

- The exchangeable assumption underlying BHM is often violated in practice.
 - BRAF-mutant melanoma and hairy-cell leukemia are sensitive to the BRAF inhibitor PLX4032, whereas BRAF-mutant colon cancer is not (Flaherty et al., 2010).
 - Trastuzumab is effective for HER2-positive breast cancer but not for HER2-positive NSCLC or HER2-positive recurrent endometrial cancer (Fkenubg et al., 2010).
- It tends to over-shrink the treatment effect toward the common mean, resulting in inflated type I error rates (Freidlin and Korn, 2013).

- Leverage longitudinal biomarker measurements that are routinely taken in clinical trials to improve the efficiency of the basket trial.
 - Biomarker: the type of biomarkers that measure the biological activity of targeted agent, e.g., the number of CD8+ T-cells and the biological activity of immune checkpoint inhibitors.
- A semi-parametric model is used to jointly model the longitudinal biomarker measurements with the binary clinical outcome.

Notations

 The objective of the trial is to test whether the drug is effective in the disease types:

$$H_0: p_i \leq q_0$$
 vs. $H_a: p_i \geq q_1$ for $i = 1, \dots, I$,

- We assume that I cancer types can be classified into K latent subgroups, $1 \le K \le I$.
- C_i : the latent subgroup membership indicator, with $C_i = k$ denoting that the *i*th cancer type belongs to the *k*th subgroup, $k = 1, \dots, K$.
- Y_{ij} : a binary variable for the treatment response of the *j*th patient in the *i*th cancer type.
- Z_{ijl} : the biomarker measurement for the *j*th patient in the *i*th cancer type at the time t_l , for $l=1,\dots,L$.

BLAST Model Formulation

 \bullet We assume that C_i follows a multinomial distribution

$$C_i \sim \text{Multinomial}(\pi_1, \cdots, \pi_K),$$

where
$$\pi_k = \Pr(C_i = k), k = 1, \dots, K$$
.

ullet The treatment response Y_{ij} follows a latent-subgroup hierarchical model

$$egin{aligned} Y_{ij}|p_i &\sim \textit{Ber}(p_i) \ heta_i &= \log\left(rac{p_i}{1-p_i}
ight) \ heta_i|C_i &= k \sim \textit{N}(heta_{(k)}, au_{(k)}^2), \end{aligned}$$

BLAST Model Formulation

• We model Z_{ijl} using a semiparametric mixed model as follows,

$$\begin{aligned} Z_{ijl}|(Y_{ij},C_i=k) &= \mu_{(k)}(t_l) + v_i + w_{ij} + \beta Y_{ij} + \epsilon_{ijl} \\ v_i &\sim \mathcal{N}(0,\sigma_v^2) \\ w_{ij} &\sim \mathcal{N}(0,\sigma_w^2). \end{aligned}$$

 $\mu_{(k)}(t_l)$: mean trajectory of the biomarker for the kth subgroup;

v_i: cancer-type-specific random effect;

w_{ii}: subject-specific random effect;

 β : captures the relationship between Z and Y.

• $\mu_{(k)}(t_l)$ is modeled using the penalized spline (Eilers and Marx, 1996; and Ruppert et al., 2003),

$$\mu_{(k)}(t_l) = \gamma_{0(k)} + \gamma_{1(k)}t_l + \gamma_{2(k)}t_l^2 + \dots + \gamma_{d(k)}t_l^d + \sum_{s=1}^S a_{s(k)}(t_l - \kappa_s)_+^d,$$

$$a_{s(k)} \sim N(0, \sigma_{a(k)}^2).$$

the Number of Latent Subgroups

 We choose the value of K such that the corresponding model has the best goodness-of-fit according to the deviance information criterion (DIC). In practice, it is often adequate to restrict the search space of K to {1,2}.

the Number of Latent Subgroups

- We choose the value of K such that the corresponding model has the best goodness-of-fit according to the deviance information criterion (DIC). In practice, it is often adequate to restrict the search space of K to {1,2}.
- The value of K will be updated in the light of accumulating data. As a result, it may differ from one interim evaluation to another, depending on the observed data.

Simulations

- We considered six cancer types and up to two latent subgroups (i.e., effective and ineffective subgroup) with null $q_0 = 0.2$ and alternative $q_1 = 0.3$.
- The maximum sample size for each cancer type was 25, with three interim analyses conducted when the sample size in each cancer type reached 10, 15 and 20,
- We constructed 10 different scenarios by varying the true response rate and trajectory shape for the cancer type.

Trajectory Shapes

Figure: The trajectory shapes considered in the simulation study.

Introduction Methods Results Discussion Backup slides

Results - Rejection Percentage

 $\begin{tabular}{ll} \textbf{Table 1:} Simulation results of the independent, Bayesian hierarchical model (BHM) and BLAST designs under biomarker trajectory setting A. \\ \end{tabular}$

			Cancer type						Sample
Scenario Design			1	2	3	4	5	6	size
A 1		Resp. rate	0.2	0.2	0.2	0.2	0.2	0.2	
	Independent	% reject	9.9	10.1	10	10.1	10	9.9	132.9
	$_{\mathrm{BHM}}$	% reject	9.8	10.2	9.9	9.9	9.8	9.8	129.1
	BLAST	% reject	9.8	10.1	9.8	9.9	10.1	9.8	129.6
A2		Resp. rate	0.3	0.3	0.3	0.3	0.2	0.2	
	Independent	% reject	46.5	45.4	45.9	41.4	9.2	11.6	141.5
	BHM	% reject	69.6	68.6	72.2	70.8	45.8	42.3	147.2
	BLAST	% reject	90.4	91.3	91.8	91.2	11.8	12	140.5
A3		Resp. rate	0.35	0.3	0.3	0.2	0.2	0.2	
	Independent	% reject	69	44.5	46.6	9.7	9.9	10.5	139.8
	$_{\mathrm{BHM}}$	% reject	74.9	62.8	66.6	39	36.4	36.4	146.0
	BLAST	% reject	94.7	89.2	91.3	8.6	9.9	7.8	137.6
A4		Resp. rate	0.3	0.3	0.2	0.2	0.2	0.2	
	Independent	% reject	45.4	43.4	10	9.4	10.6	10.2	137.3
	$_{\mathrm{BHM}}$	% reject	46.5	47.4	26.3	26.5	25.2	23.9	141.3
	BLAST	% reject	82.1	85.7	10	9.3	8.2	9	133.4
A5		Resp. rate	0.3	0.2	0.2	0.2	0.2	0.2	
	Independent	% reject	45	11.4	7.8	8.6	10.4	9.4	135.2
	BHM	% reject	35.8	15.9	18.7	17.8	15.7	16.2	135.9
	BLAST	% reject	71.3	11.3	10.1	11.1	10.7	10.9	129.9

Results - Stopping Percentage

Sensitivity Analysis - 4 cancer types

Sensitivity Analysis - 10 cancer types

Discussion

- By jointly modeling the longitudinal biomarker measurements and treatment responses, the BLAST design simultaneously groups cancer types into different subgroups and makes Bayesian inference and go/no-go interim treatment decisions for each cancer type.
- It yields high power to detect the treatment effect for sensitive cancer types that are responsive to the treatment, and maintains a reasonable type I error rate for insensitive cancer types that are not responsive to the treatment.

Discussion

- The proposed BLAST design can be easily extended to the case where more than one targeted therapies are considered.
- We treat K as fixed and use DIC to select the optimal number of latent subgroups. Alternatively, we can treat K as an unknown parameter, and estimate it together with the other parameters.

Thank you!

Introduction Methods Results Discussion Backup slides

Simulation Settings

